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ABSTRACT 
 
An earlier paper detailed calculations associated with the effect of bag failure on 
baghouse outlet loading. This paper extends this development to include the estimation of 
these baghouse emissions as a function of time using the Weibull distribution to predict 
the time course of bag failures. 
 
The highest source of maintenance and cost for baghouses is generally the filter bags. All 
bag sets have a finite lifetime that will vary by application, installation, operating 
parameters, fabric type, etc. Typically, a few bags will fail initially or after a short period 
of operation as a result of installation damage or manufacturing defects. The failure rate 
should then remain low until the operating life of the bags is reached unless a unique 
failure mode is present within the system.  The failure rate then increases, normally at a 
near exponential rate. Industry often describes this type of failure rate behavior via a 
Weibull distribution similar to a bathtub curve. 
 
A short review of the earlier paper is followed by a discussion of the Weibull distribution 
and its application to baghouse operation and maintenance problems. The procedures 
presented allow one to both calculate the effect of bag failure on particulate discharge 
from baghouses, as well as estimate the number of and times when bags will fail. In 
addition to reducing operation and maintenance for baghouse operators, the method 
allows for quick response to malfunctions associated with bag failures. 
 
Four illustrative examples complement the presentation. 
 
INTRODUCTION 
 
An earlier paper1 detailed calculations associated with the effect of bag failures on 
baghouse outlet loading. This paper extends this development to include the estimation of 
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these baghouse emissions as a function of time using the Weibull distribution to predict 
the time course of bag failures. A short review of the earlier paper is followed by a 
discussion of the Weibull distribution and its application to baghouse operation and 
maintenance problems. 
 
The highest source of maintenance and cost for baghouses is generally the filter bags. All 
bag sets have a finite lifetime that will vary by application, installation, operating 
parameters, fabric type, etc. Typical causes of bag failure are: 

 
 1. High localized gas velocity (due to gas maldistribution) 
 2. Metal-to-cloth abrasion 
 3. Chemical attack 
 4. Bag-to-bag abrasion 
 5. Inlet velocity abrasion (on inside-out cleaning configuration) 
 6. Accidents 
 7. Upset conditions (e.g., temperature excursions) 
 8. Thread mismatch 
 9. Cuff mismatch 
 10. Improper installation 

 
In addition, each bag in a set may have a different life as a result of fabric quality, bag 
manufacturing tolerances, location in the collector, and variation in the bag-cleaning 
mechanism.  Any one or a combination of these factors can cause bags to fail. This means 
that a baghouse will experience a series of intermittent bag failures until the failure rate 
requires total bag replacement. Typically, a few bags will fail initially or after a short 
period of operation as a result of installation damage or manufacturing defects. The 
failure rate should then remain very low until the operating life of the bags is reached 
unless a unique failure mode is present within the system.  The failure rate then increases, 
normally at a near exponential rate. Industry often describes this type of failure rate 
behavior via a Weibull distribution similar to a bathtub curve2,3, and details of this failure 
distribution are presented below. 
 
The importance of when to replace a broken bag will depend on the nature of the 
emission, the type of collector and the resultant effect on outlet emissions. In "inside bag 
collection" type collectors with shaker and reverse-air cleaning, it is very important that 
dust leaks be stopped as quickly as possible to prevent adjacent bags from being abraded 
by jets of dust being emitted from the broken bag, causing a "domino" effect of bag 
failure. "Outside bag collection" systems with pulse jet cleaning do not have this 
problem, and the speed of repair for these systems is driven by whether the outlet opacity 
has exceeded its regulated limit. Often, it will take several broken bags to create an 
opacity problem, and a convenient maintenance schedule can be employed in these 
"outside bag collection' systems instead of requiring emergency maintenance. 
 
In either type of collector, the location of the broken bag(s) has to be determined and 
corrective action taken. In a non-compartmentalized unit, this requires system shutdown 
and visual inspection. In inside bag collectors, bags often fail close to the bottom of the 
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bag, near the tube sheet. Accumulation of dust on the tube sheets, the holes themselves, 
or unusual dust patterns on the outside of the bags often occurs. Other probable bag 
failure locations in inside bag collectors with reverse-air cleaning are near anti-collapse 
rings or below the top cuff. In inside bag collectors with shaker cleaning, one should 
inspect the area below the top attachment. Improper bag tensioning can also lead to 
premature bag failures. 
 
In outside bag collectors, which are normally top-access systems, inspection of the bags 
themselves is difficult; however, location of the broken bag(s) can normally be 
accomplished by looking for dust accumulation on top of the tube sheet, on the underside 
of the top-access door, or on a blowpipe. 
 
EFFECT OF BAG FAILURE ON OUTLET LOADING 
 
The effect of bag failure on baghouse efficiency can be described by the following 
equations: 
 
 𝑃!∗   =   𝑃! + 𝑃!" (Eq. 1) 
 𝑃!"   =   

!.!"#(∆!)!/!

!
 (Eq. 2) 

 𝜙 = !
!!!(!!!"#)!/!

 (Eq. 3) 
 
where: 
 
 𝑃!∗ = penetration after bag failure 
 𝑃! = penetration before bag failure 
 𝑃!" = penetration correction term; contribution of broken bag to 𝑃!∗ 
 ∆P = pressure drop, in H2O 
 𝜙 = dimensional parameter 
 q = volumetric flow rate of contaminated gas, acfm 
 L = number of broken bags 
 D = bag diameter, inches 
 T = temperature, F 
 
Refer to the literature for a detailed development of Equations 1 through 3.1,3,4 
 
THE WEIBULL DISTRIBUTION2 
 
The failure rate of equipment frequently exhibits three stages: 
 
 1) a break-in stage with a declining failure rate over time,  
 2) a useful life stage characterized by a fairly constant failure rate over time, and  
 3) a wear-out stage characterized by an increasing failure rate with increasing 
     operating time.  



 4 

Many industrial parts and components, as well as human mortality rates with respect to 
age, follow this three-stage relationship. A failure rate curve exhibiting these three phases 
(see Figure 1) has been referred to as the aforementioned bathtub curve. 
 

Figure 1.  The Bathtub Failure Rate Curve. 

 
 

Weibull introduced the distribution, which bears his name principally on empirical 
grounds, to represent certain life-test data. The Weibull distribution provides a 
mathematical model of all three stages of the bathtub curve. The model describing the 
failure rate, Z, which reflects all three of the bathtub stages is: 
 
 𝑍(𝑡) = 𝛼𝛽𝑡!!!;   𝑡 > 0 (Eq. 4) 
 
where:  
 𝛼 and 𝛽 = constants 
 t = time 
 
For 𝛽 < 1 the failure rate Z(t) decreases with time (Figure 1, Stage 1). For 𝛽 = 1 the 
failure rate is constant and equal to  𝛼 (Figure 1, Stage 2). For 𝛽 > 1 the failure rate 
increases with time (Figure 1, Stage 3). One can translate the above failure rate equation 
into a corresponding probability density function (pdf) of t, time-to-failure, as shown in 
Equation 5: 
 
 𝑓(𝑡) = 𝛼𝛽𝑡!!!exp 𝛼𝛽𝑡!!!𝑑𝑡!

! = 𝛼𝛽𝑡!!!exp −𝛼𝑡! ;   𝑡>0,𝛼>0,𝛽>0 (Eq. 5) 
 
Equation 5 defines the pdf of the Weibull distribution.2,3 The exponential distribution is a 
special case of the Weibull distribution with β = 1. The variety of assumptions about 
failure rate and the probability distribution of time-to-failure that can be accommodated 

� ��

4. Accident - Consequence Evaluation – The severity of the consequences of the accident 
must be determined.  Consequences in terms of plant operations (plant shutdown, loss of 
capacity, etc.), society (non-lethal short-term exposures, loss of life due to acute chemical 
exposures/explosions, etc.), and/or the environment (temporary environmental damage, 
habitat loss, etc.) should all be considered as part of the overall Hazard Risk Assessment 
Process. 

5. Risk Determination – If the probability of the accident and the severity of its 
consequences are low, then the risk of the accident is usually deemed acceptable, and the 
plant should be allowed to operate.  If the probability of the occurrence is too high, and/or 
the damage to the plant and/or its surroundings are too great, the risk is usually 
unacceptable, and the system needs to be modified to either reduce the accident 
probability, or the accident consequences, or both. 
 

Once system modifications are made, the Hazard Risk Assessment process (dashed box in Figure 
1) should be repeated by starting with Step 1 (System Description) to evaluate the risk reduction 
outcomes provided by equipment, process, and/or chemical changes selected to reduce the 
resulting accident/hazard risk to acceptable levels. 
 
THE WEIBULL DISTRIBUTION9 
 
The failure rate of equipment frequently exhibits three stages:  1) a break-in stage with a 
declining failure rate over time, 2) a useful life stage characterized by a fairly constant failure 
rate over time, and 3) a wear-out period characterized by an increasing failure rate with 
increasing operating time.  Many industrial parts and components, as well as human mortality 
rates with respect to age, follow this three-stage relationship.  A failure rate curve exhibiting 
these three phases (see Figure 2) has been referred to as a bathtub curve. 
 
 

Figure 2.  The Bathtub Failure Rate Curve. 
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by the Weibull distribution make it especially attractive in describing failure time 
distributions, perhaps accounting for its widespread use in industrial and process hazard 
risk applications.2,3 
 
Estimates of the values of parameters  ∝  and  β in Equation 5 can be obtained by using a 
graphical procedure developed by Bury.5 This procedure is based on the fact that 
 
 ln ln !

1-­‐F(t)
= ln(α)+β  ln(t) (Eq. 6) 

 
where: 
 F(t) = 1 – exp(–α𝑡!) for t>0, and F(t) = 0 for t < 0 defines the cumulative distribution  
 function of the Weibull distribution 
 
Equation 6 is a linear relationship that can be represented in the form: 
 
 Y = b + mX (Eq. 7) 
 
where: 
 Y = ln[ln 1/(1 – F(t))] 
 X = ln(t) 
 b = intercept = ln(α) 
 m = slope = β 
 
The graphical procedure for estimating ∝  and  β on the basis of a sample of n observed 
values of time-to-failure, t, first involves the ordering of the observations of time-to-
failure from smallest (i = 1) to largest (i = n) when the value of the ith observation varies 
from sample to sample. It can be shown that the average value of F(t) for t equal to the 
value of the ith observation of time-to-failure can be approximated by i/(n+1). One may 
then plot ln[ln 1/(1 – i/(n+1))] against the natural logarithm of the ith observation of time-
to-failure, ti, from i = 1 to n. Under the assumption that the time-to-failure has a Weibull 
distribution, the plotted points lie on a straight line whose slope is β and whose intercept 
is ln(∝). This procedure for estimating ∝  and  β is illustrated in Example 2 below. 
 
ILLUSTRATIVE EXAMPLES OF BAGHOUSE FAILURE 
CALCULATIONS AND THE APPLICATION OF THE WEIBULL 
DISTRIBUTION 
 
The following examples6-9 demonstrate the quantitative application of the Weibull 
distribution for evaluation and prediction of baghouse bag failures. 
 
Illustrative Example 1 – Estimation of Tolerable Bag Failure Rate for 
Meeting Baghouse Performance Requirements 
 
DMT Industries owns and operates a 12-yr old 4,000 bag baghouse system consisting of 
several compartments. The bags are 4 in diameter, and the pressure drop across the 
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system is 7.0 in H2O. The operating temperature and pressure are 110°F and 1 atm, 
respectively. The inlet loading to the baghouse is 4.0 gr/ft3, and the system is 99.91% 
efficient, assuming that all bags are completely functional. The treated gas flow rate is 
770,000 acfm, and the filtering velocity is 420 ft/h. What is the maximum number of bag 
failures that can be tolerated to ensure a minimum collection efficiency of 98.57% for the 
baghouse to remain in compliance? 
 
Solution - For this system, 
 
 𝑃! = 1− 𝐸 = 1-­‐0.9991=0.0009 (before failure) 
 
and 
 
 𝑃!∗ = 1− 0.9857 = 0.0143 (after failure) 
 
Therefore, from Equation 1, 
 
 𝑃!" = 𝑃!∗ − 𝑃! = 0.0143− 0.0009 = 0.0134 
 
The dimensional parameter, 𝜙 from Equation 2 can be determined from this calculated 
value of the penetration correction term as follows: 
 
   𝜙 =    !.!"#(∆!)

!/!

!!"
= !.!"#  (!.!)!/!

!.!"#$
= !.!"

!.!"#$
= 114.9 (Eq. 8) 

 
The maximum number of broken bags that can be allowed is determined from this value 
of 𝜙 by rearrangement of Equation 3 and solving for L as: 
 
 𝐿 = !

!!!(!!!"#)!/!
= !!",!!!

!!".! ∗ !! ∗(!!"!!"#)!/!
= !!",!!!

!",!"#
= 17.5  =  18  bags (Eq. 9) 

 
Thus, a maximum of 18 bag failures can be tolerated to ensure a minimum baghouse 
collection efficiency of 98.57%. The above calculation does not provide information on 
when, i.e., what time, the baghouse will be out of compliance. This issue is addressed in 
the next three Illustrative Examples. 
 
Illustrative Example 2 – Estimation of Weibull Parameters for 
Baghouse Bag Failure Rate 
 
Following startup, the time in months to failure of an individual bag in the baghouse 
described in the previous example was recorded as follows: 0.1, 0.5, 1.2, 3, 17, 20, 23.6, 
28, 30.8, 34, 37.5, 39, 40.5, 41.5, and 42.5. If a Weibull distribution applies to these 15 
bag failure data, estimate the values of 𝛼 and 𝛽 for this Weibull distribution. 
 
Solution – Table 1 is generated from the data presented in the Problem Statement. The 
first two columns of Table 1 are tabulated from these data. The values in Column 3 are 
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calculated as the natural logarithm of corresponding time-to-failure, t, data in Column 1. 
Results in Column 4 are generated from the equation ln[ln(1/(1-i/(n + 1))] using 
corresponding values of order-of-failure, i, in Column 2 and n = 4000 based on the given 
failure data set. The data in Table 1 indicate a break-in period of approximately 3 months, 
followed by a period of constant failure rate to approximately 38 months before 
observing an increasing rate of failure beginning at 39 months. This pattern is typical of 
baghouse operation,7 so that the data may be used to generate Weibull distribution 
coefficients over the three periods of bag failure. 
 

Table 1. Data and Calculations of Weibull Coefficients for Illustrative Example 2. 
Time-to-Failure 

(t), months 
Order-of-Failure 

(i) 
 

ln(t) ln ln
𝟏

𝟏−    𝒊
𝒏+ 𝟏

 

0.1 1 -2.3 -8.29 
0.5 2 -0.7 -7.60 
1.2 3 0.2 -7.20 
3 4 1.1 -6.91 
17 5 2.83 -6.68 
20 6 3.00 -6.50 

23.6 7 3.16 -6.35 
28 8 3.33 -6.21 

30.8 9 3.43 -6.10 
34 10 3.53 -5.99 

37.5 11 3.62 -5.90 
39 12 3.66 -5.81 

40.5 13 3.70 -5.73 
41.5 14 3.73 -5.65 
42.5 15 3.75 -5.58 

 
From the results presented in Table 1, and employing Equation 7, a linear regression was 
applied with the X variable equal to the values of ln(t) in Column 3, and the Y variable 
equal to the values of ln[ln(1/(1-i/(n + 1))] in Column 4. The regression analysis was 
carried out using the regression function in Excel, for the three failure mode periods (0 to 
3 months, 17 to 37.5 months, and 39 to 42.5 months). 
 
Figure 2 shows results of the regression analysis for the break-in period (0 to 3 months) 
for this data set. 
 
From Figure 2, the Weibull coefficients for the Break-In period are as follows: α = exp(-
7.322) = 0.000661, β = 0.414. The r2 value is statistically significant and the linear 
regression fits the transformed data, suggesting that the Weibull model provides an 
accurate representation of this portion of the failure data. Table 2 summarizes the results 
of the Weibull coefficient estimation for the other two portions of the Weibull 
distribution. 
 



 8 

Figure 2. Excel Generated Regression Results for Break-In Period Data from 
Illustrative Example 2. 

 
 
 
Table 2. Summary Results of Weibull Coefficient Determination from Bag Failure 

Data Presented in Illustrative Example 2. 
Operating Period α β r2 

Break-In (0 to 3 
months) 6.61 x 10-4 0.414 0.996 

Useful Life (17 to 
37.5 months) 7.83 x 10-5 0.981 0.998 

Wear Out (> 39 
months) 2.09 x 10-7 2.61 0.992 
    

 
 
Illustrative Example 3 
Assuming the Weibull equation (and the accompanying coefficients generated in the 
previous Illustrative Example) apply to the baghouse in Illustrative Example 1, estimate 
when the baghouse will be out of compliance. 
 
Solution – To solve this problem, the failure rate, Z(t) from Equation 4, must be 
calculated. As indicated in Illustrative Example 1, for the baghouse to remain in 
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compliance, no more than 18 bags can be allowed to fail.  Based on results from 
Illustrative Example 2, an 18-bag failure scenario would occur during the Wear-Out 
period, i.e., > 39 months for this baghouse system.  Applying the Weibull distribution 
coefficients for the Wear-Out period to the calculation of Z(t) results in the following: 
 
 𝑍 𝑡 = 2.09  𝑥  10!! 2.61 𝑡!.!"!!;   𝑡 ≥ 39  𝑚𝑜𝑛𝑡ℎ𝑠 (Eq. 10) 
 
Substituting time in months for variable t in Equation 10 allows the estimation of the 
point failure rate in failures/month that would occur for the bags remaining within the 
baghouse over time. Multiplying this point failure rate by the number of remaining bags 
gives the number of bag failures expected at a given time, t. When these expected bag 
failures are added to the total number of bags that have failed up to the previous time 
step, the total number of expected failed bags can be estimated. Detailed calculations for 
the extrapolated time period t = 44 months (1.5 month after the last data point) are 
presented below. 
 
For t = 42.5 months, this value is substituted in Equation 10 to yield the following: 
 
 𝑍 𝑡 = 2.09  𝑥  10!! 2.61    42.5 !.!"!! = 5.45  𝑥  10!! 42.5 !.!" = 0.000229/𝑚𝑜 
 
For t = 44 months, this value is substituted in Equation 10 to yield the following: 
 
 𝑍 𝑡 = 2.09  𝑥  10!! 2.61    44 !.!"!! = 5.45  𝑥  10!! 44 !.!" = 0.000243/𝑚𝑜 
 
This average failure rate between 42.5 and 44 months is 0.00236/mo, and is applied to the 
number of bags remaining at t = 42.5 months, which is 3985 bags to yield the following 
estimated number of failed bags between 42.5 and 44 months: 
 
 Predicted number of Bag Failures/mo @ Between Months 42.5 and Month 44  

= 0.000236/mo (3985 bags) 
  = 0.94 Bag Failures/mo Between Month 42.5 and Month 44 
 
The total number of bags estimated to have failed by Month 44 is then determined by: 
 
 Probable Total # Bag Failures @ Month 44 

= # Bag Failures @ Month 42.5 + (1.5 mo) x (0.94 Bag Failures/mo Between 
Month 42.5 to Month 44) = 15 + 1.41 = 16.4 Bag Failures @ Month 44 

 
Table 3 summarizes the balance of these incremental monthly calculations for the Wear-
Out period for this baghouse system including the point of non-compliance, i.e., a total of 
18 bag failures at approximately 45.6 months, out to a 60-month operating period. Figure 
3 shows this increasing bag failure rate projected during the Wear-Out period. 
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Table 3. Summary Calculations for Failure Rate (Z(t)) and Cumulative Bag Failures 
Over Time Estimated from the Weibull Distribution during the Wear-Out Period.† 

Time to 
Failure, t (mo) 

Order of 
Failure (i) 

Z(t), 
Failures/mo 

Predicted # Bag 
Failures/∆Time 

Period 

Probable Total 
# Bag Failures 

39 12 0.000200  12 
40.5 13 0.000212  13 
41.5 14 0.000221 1.20 14 
42.5 15 0.000229 1.20 15 
44  0.000243 1.41 16.4 

44.6  0.000248 0.59 17.0 
45.6  0.000257 1.01 18.0 
50  0.000298 4.86 22.9 
60  0.000400 13.88 36.7 

† Table values in bold are extrapolated from the observed bag failure data set presented 
in Table 1. 

 
 

Figure 3. Measured and Projected Bag Failures Over Time During the Wear-Out 
Period in Illustrative Example 3.† 

 
† Projected bag failures indicated by dotted line. 
 
 

Illustrative Example 4 
Estimate the particulate discharge over time from the baghouse described in Illustrative 
Example 1 as a function of the probable total number of bag failures estimated in 
Illustrative Example 3. 
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Solution – Equations 1 through 3 are used to determine the penetration correction term, 
Ptc, that is applied to the initial bag house particulate removal efficiency as individual 
bags fail over time.  Equation 3 is used to dimensional parameter, 𝜙, as a function of the 
number of broken bags, L. This value of 𝜙 is then substituted into Equation 2 to 
determine the additional particulate penetration resulting from bag failure, and then the 
overall particulate penetration is determined from Equation 1.  These calculations are 
demonstrated below for the 17th bag failure predicted to occur at approximately 44.6 
months, while Table 4 and Figure 4 summarize the declining particulate removal 
efficiency predicted over an entire 60-month operating period for this baghouse system. 
 
For 17 failed bags, L = 17.  Substituting this value into Equation 3 for the baghouse 
operating conditions presented in Illustrative Example 1 yields the following: 
 

 ϕ = 𝐪
𝐋𝐃𝟐(𝐓!𝟒𝟔𝟎)𝟏/𝟐

=    𝟕𝟕𝟎,𝟎𝟎𝟎
𝟏𝟕 𝟒 𝟐(𝟏𝟏𝟎!𝟒𝟔𝟎)𝟏/𝟐

=    𝟕𝟕𝟎,𝟎𝟎𝟎
𝟔𝟓𝟏𝟎

= 118 
 
This dimensionless parameter is then substituted into Equation 2 to generate a penetration 
correction factor as follows: 
 

 𝑃!"   =   
!.!"#(∆!)!/!

!
=    !.!"#  (!)

!/!

!!"
= 0.0130 

 
 
Table 4. Summary Calculations for Particulate Removal for Baghouse System from 

Illustrative Example 4.† 
Number of 

Failed 
Bags, L 

Time to 
Failure 

(months) 
Dimensionless 

Parameter,  

Penetration 
Correction 
Term, Ptc 

Penetration 
After Bag 

Failure 

Particulate 
Removal 

Efficiency, E 
0 0 0   0.0009 99.91 
1 0.1 2016 0.0008 0.0017 99.83 
2 0.5 1008 0.0015 0.0024 99.76 
3 1.2 672 0.0023 0.0032 99.68 
4 3 504 0.0031 0.0040 99.60 
5 17 403 0.0038 0.0047 99.53 
6 20 336 0.0046 0.0055 99.45 
7 23.6 288 0.0053 0.0062 99.38 
8 28 252 0.0061 0.0070 99.30 
9 30.8 224 0.0069 0.0078 99.22 

10 34 202 0.0076 0.0085 99.15 
11 37.5 183 0.0084 0.0093 99.07 
12 39 168 0.0092 0.0101 98.99 
13 40.5 155 0.0099 0.0108 98.92 
14 41.5 144 0.0107 0.0116 98.84 
15 42.5 134 0.0115 0.0124 98.76 

16.5 44 123 0.0125 0.0134 98.66 
17.0 44.6 119 0.0130 0.0139 98.61 
18.0 45.6 112 0.0138 0.0147 98.53 
22.9 50 88 0.0175 0.0184 98.16 
36.7 60 55 0.0281 0.0290 97.10 

† Table values in bold are based on extrapolated bag failure data. 
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Figure 4. Particulate Removal Efficiency Over Time for Baghouse System from 
Illustrative Example 4.† 

 
† Projected particulate removal efficiency results indicated by dotted line. 
 
 

The penetration after 17 bag failures is then calculated as follows using Equation 1: 
 
 𝑃!∗   =   𝑃! + 𝑃!" = 0.0009+ 0.0130 =   0.0139 
 
Finally, the resulting particulate removal efficiency is determined as: 
 
 Particulate removal efficiency = 1−   𝑃!∗   =   1− 0.0139 = 0.9861 = 98.61% 
 
SUMMARY 
 
Procedures presented in an earlier paper by McKenna, Clark and Theodore1 for detailed 
calculations associated with the effect of bag failures on baghouse outlet loading were 
extended in this paper to include the estimation of baghouse emissions as a function of 
time through the use of the Weibull distribution to predict the time course of bag failures. 
Illustrative examples were used to demonstrate these calculations and to develop Weibull 
distribution coefficients describing bag failure rates during Break-In, Useful Life, and 
Wear-Out periods of baghouse operations. The Weibull distribution during the Wear-Out 
period was used to predict the time to failure of bags past the present observation time 
period and to estimate the time when particulate emission non-compliance will occur.  
 
The methodology presented provides a straightforward means of predicting future bag 
failures, allowing for a timely response to avoid compliance issues and reduce 
operational and maintenance problems. 
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