Filter Media Selection for Coal Fired Plants

John D. McKenna ETS, Inc. October 16, 2008 McIlvaine Company Hot Topic Hour

Filter Media Options

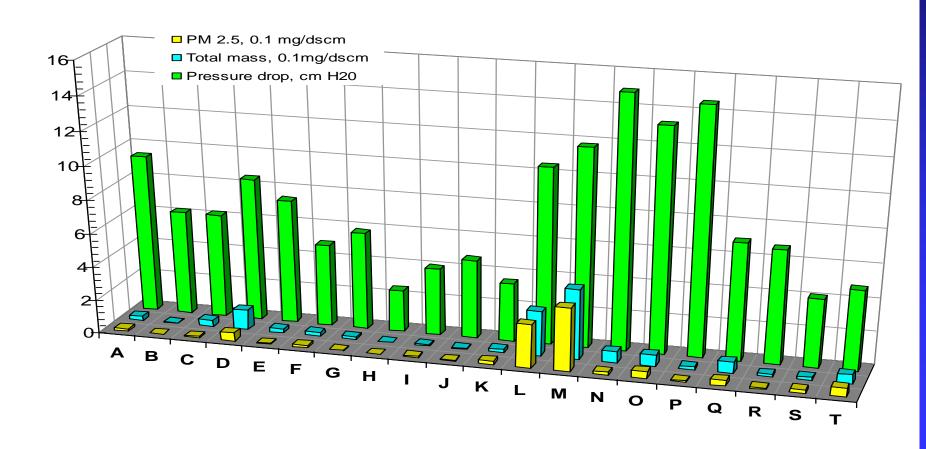
- Pulse Jet
 - PPS Felt
 - P-84® Felt
 - Woven Fiberglass
 - Woven Fiberglass with PTFE membrane
 - Teflon® Felt
 - PPS Felt / P-84® Blends
- Reverse Air
 - Woven Fiberglass
 - Woven Fiberglass with PTFE membrane

PM_{2.5} Impacts

- On May 16th, 2008 the EPA published the final new source review (NSR) standard for fine particulate matter.
- The rule finalizes several NSR requirements for stationary sources that emit PM_{2.5} and other pollutants that contribute to fine particulate.
- The new rule defines a major source as "one of 28 specific categories listed in the current federal prevention of significant deterioration requirements and (the source) emits more than 100 tons per year (tpy); or if (more than one source) emits 250 tpy or more of fine particulates."
- The rule became effective as of July 15th, 2008.

State Rules

- SCAQMD rule in fall 2005 reduced the frequency of compliance tests when verified fabrics are used in the cement industry. They are considering expanding this approach to other sources.
- EPA OAQPS sent a memo in September 2007 to the Regional Offices encouraging actions similar to SCAQMD's rule.


The Environmental Technology Verification Program (ETV)

- Started by the U. S. Environmental Protection Agency in October 1995
- Generate independent & credible data on the performance of innovative technologies
- Help organizations, industries, business, states, communities, and individuals make more informed decisions when selecting new environmental technologies.

Environmental Technology Verification (ETV) Results

A-K membrane L-T non-membrane

ETV Future Programs

- Vendors/developers will benefit in that a favorable verification will expedite market penetration for their new and innovative filtration products.
- End users will find the verification statements to be a valuable resource in comparing filter media alternatives and will specify filtration products having favorable verification statements.

ETV Future Programs

- Products:
 - Reverse air cleaning
 - Bonded (vs sewn) bags
 - Pleated (cartridge) filters
 - High temperature ceramics and metals
 - Coated media; e.g., activated carbon
- Vendor specified test conditions:
 - Dust type
 - Gas temperature
 - Gas/cloth ratio

Typical QA/QC Programs

- What should be done in a typical QA/QC Program for BFPs?
 - Dimensional and construction inspection of prototype & production bags to verify product specifications
 - Lab validation of mechanical & physical properties of fabric
 - Filtration performance testing

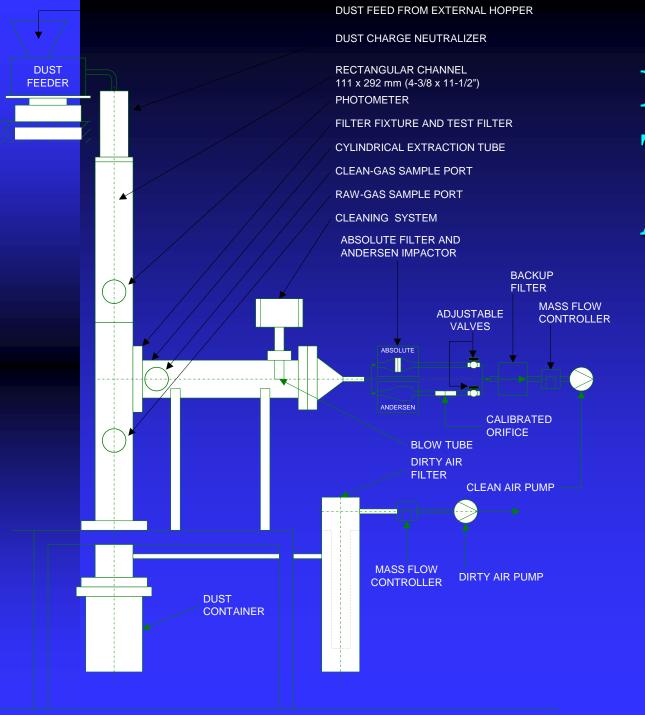
Bag Quality Control Program

Fabric

- Construction
- Tensile
- Permeability
- Burst
- Flex
- Finish
- FiltrationPerformance

Thread

- Material
- Strength


Hardware

- Caps
- Rings
- Bands

<u>Bags</u>

- Inspect for general quality of workmanship
- Length as fabricated
- Length under tension
- Cuff to thimble & cap mate

BFP Test Apparatus

BFP Verification Parameters

- Outlet fine particle concentration, PM 2.5
- Outlet total particle concentration, total mass
- Residual pressure drop increase
- Average residual pressure drop
- Average filtration cycle time
- Mass weight gain of sample

PPS Media Specification Example

Fabric filter bags shall be:

- PPS felt
- Weight min. 17.0 ounces/yd²
- Heat set, calendared & smooth faces
- Mullen burst strength min. of 500 psi
- Shrinkage max 2% (@ 400 °F for 2 hours)
- Permeability 30 \pm 8 cfm (@ 0.5 in. H₂O)
- Filtration Performance

Filter Bag Quality Assurance/Control

TEST	ASTM METHOD	TEST LEVEL		
FABRIC		1	2	3
Thickness	D1777	YES	YES	YES
Tensile Strength	D1682-64			
Warp		YES	YES	
Fill		YES		
Mullen Burst	D3787-80A	YES	YES	YES
Permeability	D737-75	YES	YES	YES
Organic Content (LOI)	D578-83	YES	YES	YES
MIT Flex	D2176-69			
Warp		YES		
Fill		YES		
Filtration Performance*	D6830-02	YES	YES	
Microscopic				
THREAD				
Tensile Strength	D4030-83	YES		
Organic Content (LOI)	D4030-83	YES		

^{*} All testing will be in accordance with the EPA Environmental Technology Verification (ETV) protocol for Baghouse Filtration Products (BFP) using ASTM Method D6830-02.

Summary & Recommendations

- ETV/BFP has proven to be a very valuable tool for:
 - facilitating market entry of commercial ready filtration fabrics
 - verifying vendor filtration performance & pressure drop claims
- ASTM 6830 with more than 100 tests conducted has proven to be:
 - an essential component of QA/QC programs when purchasing new bag sets
 - an excellent tool for filtration performance screening of development stage fabric
 - a suitable test for monitoring long term performance deterioration

Summary & Recommendations

- There have been a limited number of cases where ETV/BFP & ASTM 6830 have successfully proven to be a regulatory tool in lieu of stack emission testing.
- Both PM 2.5 and total emission test results have consistently shown that the fundamental filtration capability of the vast majority of fabrics tested far exceeds any existing emission control requirement.